Exercises for Stochastic Processes

Tutorial exercises:

- T1. (a) Show that τ is a stopping time if and only if for all $t \ge 0$ it holds that $\{\tau < t\} \in \mathcal{F}_t$.
 - (b) Let $(\tau_n)_{n\in\mathbb{N}}$ be a sequence of stopping times. Show that $\sup_n \tau_n$, $\inf_n \tau_n$, $\limsup_{n\to\infty} \tau_n$, $\liminf_{n\to\infty} \tau_n$ and, if existent, $\lim_{n\to\infty} \tau_n$ are stopping times.
- T2. Let τ and $(\tau_n)_{n \in \mathbb{N}}$ be stopping times with respect to the right-continuous filtration (\mathcal{F}_t) associated to Brownian motion.
 - (a) Show that

$$\mathcal{F}_{\tau} := \{ A \in \mathcal{F} \mid \forall t \ge 0 : A \cap \{ \tau \le t \} \in \mathcal{F}_t \}$$

is a σ -algebra.

- (b) Show that τ is \mathcal{F}_{τ} -measurable.
- (c) Show that, if $\tau_1 \leq \tau_2$, then $\mathcal{F}_{\tau_1} \subset \mathcal{F}_{\tau_2}$.
- (d) Show that, if $\tau_n \downarrow \tau$, then $\mathcal{F}_{\tau} = \bigcap_n \mathcal{F}_{\tau_n}$.

T3. Determine the distribution of

- (a) $\tau_1 := \inf\{t \ge 1 \mid B_t = 0\}$ and
- (b) $\tau_2 := \sup\{t < 1 \mid B_t = 0\},\$

for a Brownian motion B starting in the origin.

 \rightarrow Page 2

Homework exercises:

- H1. Show that, if B is a Brownian motion and τ a finite stopping time (with respect to the corresponding right-continuous filtration (\mathcal{F}_t)), then $Y_t := B_{\tau+t} B_{\tau}$ defines a Brownian motion, which is independent of \mathcal{F}_{τ} .
- H2. The "tail σ -algebra" with respect to Brownian motion $B_t(\omega) = \omega(t)$ on $C[0, \infty)$ is defined as

$$\mathcal{T} := \bigcap_{t>0} \sigma(\{B_s \mid s \ge t\}).$$

- (a) Show that, for any $A \in \mathcal{T}$, $\mathbb{P}^x(A) \in \{0, 1\}$.
- (b) Show that $\mathbb{P}^{x}(A)$ does not depend on x.
- H3. Show that the (ω -dependent) set of times at which a Brownian motion has local maxima is a.s. dense in $[0, \infty)$.
- H4. (a) Let B be a Brownian motion starting in the origin, a > 0 and

$$\tau_a := \inf\{t > 0 \mid B_t - t = a\}.$$

Show that, for a, b > 0,

$$\mathbb{P}(\tau_{a+b} < \infty \mid \tau_a < \infty) = \mathbb{P}(\tau_b < \infty).$$

(b) Conclude that $\sup_{t>0}(B_t - t)$ has an exponential distribution.

Deadline: Monday, 11.11.19